
C
s
o

K
D

a

A
R
R
A
A

K
M
X
L
T

1

p
a
o
t
fi
t
a
u
u
t
g

o
m
t
[
d
m
m
o

0
d

Journal of Power Sources 195 (2010) 7943–7958

Contents lists available at ScienceDirect

Journal of Power Sources

journa l homepage: www.e lsev ier .com/ locate / jpowsour

haracterization and analysis methods for the examination of the heterogeneous
olid oxide fuel cell electrode microstructure: Part 2. Quantitative measurement
f the microstructure and contributions to transport losses

yle N. Grew, Aldo A. Peracchio, Wilson K.S. Chiu ∗

epartment of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd., Storrs, CT 06269-3139, United States

r t i c l e i n f o

rticle history:
eceived 1 April 2010
eceived in revised form 2 July 2010
ccepted 5 July 2010
vailable online 3 August 2010

a b s t r a c t

Advanced characterization and analysis of multifunctional materials, such as the materials found in het-
erogeneous solid oxide fuel cell (SOFC) electrode architectures, can help to provide a qualitative and
quantitative understanding of how these structures respond to different manufacturing and operating
practices. Dense, opaque materials, which have large X-ray mass absorption coefficients and features
on sub-micrometer length scales, can make characterization difficult. Advances in tomographic X-ray
eywords:
icrostructure
-ray
attice Boltzmann
ransport

imaging can permit this level of detailed characterization, and complement stereographic scanning elec-
tron microscope measurements that have also been reported. In this second part of a two-part study,
details regarding quantitative characterization methods that have been used to examine the SOFC anode
microstructure are reported. The detailed formulation and validation of a phase size distributions for the
three constitutive phases, as well as resistive loss microstructure-induced resistive loss distributions in

stabi
the nickel (Ni) and yttria-

. Introduction

Advances in X-ray and electron based imaging methods have
rovided new capabilities for imaging and reconstructing dense
nd opaque 3-D heterogeneous structures at spatial resolutions
n the order of tens of nanometers in length. Demonstrations of
hese capabilities include tomographic reconstruction using a full-
eld transmission X-ray microscope (TXM), or X-ray computed
omography (XCT), as have previously been demonstrated by the
uthors and coworkers [1,2]. These capabilities may include the
se of stereographic methods in which a focused ion beam is
sed in conjunction with a scanning electron microscope (FIB-SEM)
o ascertain the 3-D nanostructure, as reported by independent
roups [3–6].

These methods enable the digital reconstruction of the details
f the heterogeneous nano/microstructure. Exploitation of the ele-
ental X-ray absorption edges has recently been demonstrated for

he elemental phase mapping of the SOFC anode microstructure
1]. Similar capabilities are available for the FIB-SEM measurement,

ue to contrast differences in back-scattered electrons coming from
aterials of different atomic masses [3–6]. The XCT and FIB-SEM
ethods can be viewed as complementary methods, where each

ffers unique opportunities and capabilities.

∗ Corresponding author. Tel.: +1 860 486 3647; fax: +1 860 486 5088.
E-mail address: wchiu@engr.uconn.edu (W.K.S. Chiu).
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lized zirconia (YSZ) phases are provided in this section.
© 2010 Elsevier B.V. All rights reserved.

This study is motivated by interests in advancing the under-
standing of nano- to micro-structured heterogeneous materials and
their functional impact on devices like the SOFC through advanced
characterization methods [7,8]. Developments in the understand-
ing of these materials and structures should help us to address
their limitations and degradation mechanisms while enhancing
their functionality. The XCT and FIB-SEM characterization meth-
ods can enable new degrees of scientific and engineering insight
into the materials and structures used in these systems. The scien-
tific understanding of the nano/microstructures imaged using these
methods can also be used for advanced modeling and simulation.

The details regarding the formulation, methods, validation, and
implications of several quantitative characterization and analy-
sis methods are presented in this work. These are methods that
the authors have used to characterize the porous Ni–YSZ cermet
SOFC anode in previous studies [1,2,9,10]. Part 1 of this effort [7]
describes the details of methods that are used to calculate the vol-
ume fraction, contiguity, tortuosity, and interfaces of the pore, Ni,
and YSZ phases in these structures. Here, a detailed look at meth-
ods used by the authors to investigate the size distribution of these
same phases and their effect on transport is provided. This begins
with the development of a phase size distribution, which is used

to provide the relative volumetric contributions of unique char-
acteristic diameters of the individual phases in the structure. The
effects that these phase structures have on transport are provided
with a resistive loss and microstructure-induced resistive loss dis-
tributions. This requires a transport phenomena study, which is

dx.doi.org/10.1016/j.jpowsour.2010.07.006
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:wchiu@engr.uconn.edu
dx.doi.org/10.1016/j.jpowsour.2010.07.006


7944 K.N. Grew et al. / Journal of Power Sources 195 (2010) 7943–7958

Table 1
Properties of generated phenomenological structure and grid.

Set Phase Volume fraction Set particle diameter, �m Particles Voxel size, nm3 Voxels/edge Volume, �m3

1 Ni 0.330 1.0 95 503 – –
YSZ 0.329 1.0 165 503 – –
Pore 0.341 NA – 503 – –
Volume 1.00 NA – 503 100 53

2 Ni 0.347 1.0 100 503 – –
YSZ 0.336 0.5 1400 503 – –
Pore 0.317 NA – 503 – –
Volume 1.00 NA – 503 100 53
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YSZ 0.331 1.0
Pore 0.333 NA
Volume 1.00 NA

erformed with a lattice Boltzmann method. The demonstrations
f the resistive loss distributions are demonstrated solely in the YSZ
hase in this study at this time; however, they can be extended to
he other phases. This goal of this manuscript is to relay the details
f the development, verification, and validation of the methods that
he authors have performed to quantitatively study the details of
he heterogeneous structure to the community. These methods are
escribed in the context of the SOFC porous Ni–YSZ anode structure,

maged using XCT methods [1,2,11–13]. The results and discussion
resented in this work take the form of the verification and val-

dation of the described methods along with discussions of these
tudies and their implications.

. Samples and structures

In Part 1 of this study, details are provided regarding a number
f unique samples and data sets [7]. These data sets include (i) a
ample of a porous Ni–YSZ SOFC anode imaged and reconstructed
sing tomographic methods with elemental mapping via subse-
uent scanning across the elemental X-ray absorption edges in a
XM with a synchrotron source, (ii) two samples of independent
orous Ni–YSZ anodes imaged and reconstructed with a commer-
ial XCT system with a laboratory source, and (iii) samples that have
een artificially generated using Monte-Carlo, or sphere-packing,
ethods. These same samples and generated structures are con-

idered in this study.
The discussion in Part 1 includes details that pertain to the

ample preparation and references for the methods used. The
phere-packing samples are not considered as being representative
f the SOFC anode. Rather, they are generated as phenomenological
ases that can aide in the development and testing of the methods
iscussed in both parts of this study. Table 1 provides a description
f the structures and constituent particle sizes that are considered
n this work. This includes structures that were not considered in
art 1. A complete review of these samples, data sets, and meth-
ds are not repeated here. Those interested are referred to Part 1
7] and several studies detailing the use of XCT and X-ray imaging
fforts [1,2,11,13,14].

. Quantitative characterization methods

.1. Phase size distribution (PSD)

To examine the phase-specific, volumetric dependence of the

ample morphology, a method which resembles a ray-shooting
ethod has been developed. This method is used to identify a phase

ize distribution, which describes the Ni, YSZ, and pore regions of
he sample structures. The phase size distribution, provides the
ontribution of a specific phase diameter, D, within the detailed,
800 50 – –
175 503 – –
NA 503 – –

– 503 100 53

phase-specific structure to the total volume fraction which that
phase occupies. This diameter may be thought of as related to the
cross-sectional area of a region of a given phase (i.e., D ∝

√
A).

3.1.1. Lattice Boltzmann discretized ray-shooting method
The ray-shooting method developed in this study is built upon

the 3-D, 19-velocity vector lattice Boltzmann method (LBM) dis-
cretization scheme [15,16]. Each voxel has a set of inter-connecting
vectors that corresponds to 18 directions surrounding the local
zero position at the center of the voxel. This provides a set of self-
consistent direction vectors that discretize the geometric domain.
This discretization is used to simplify the analysis of the digital
structure by limiting the directions that are considered.

The 19-direction vectors of the LBM discretization lie at and
inter-connect every voxel within the structure. Voxels that lie at
the phase interface are of specific interest. Each of these interfaces
serves as a launch point for a single ray. The ray is launched in the
normal direction from this interface, corresponding to one of the
19-direction vectors in the LBM discretization. The ray is propagates
along one of these direction vectors until a second phase is reached
within the geometry file, providing a ray length. The geometric file
is iteratively searched for phase interfaces and continues until the
entire structure has been examined. The lengths of individual rays
are appended to a file for post-processing as they are identified.
Additional details of the tabulation of the ray lengths and several
sample scenarios are provided in Ref. [1].

Several intricacies of the ray-shooting method require discus-
sion. In a separate effort [1], several hypothetical cases were shown.
A similar hypothetical cross-section is shown in Fig. 1. We ignore
the scalar resistive loss values, Q, in the individual voxels in this
representation in this discussion. For the case in Fig. 1, rays would
be launched from each square interface, totaling 12 rays of 3 voxels
and 4 rays of 3

√
2 from the corners. The number of rays identi-

fied for a given cross-section may vary from a larger or smaller
cross-section and would propagate down the length of the phase.

3.1.2. Analytic development
To interpret the data collected by the ray-shooting method, an

analytic development is needed. This development permits a quan-
titative description of the sample’s microstructure on the basis
of the tabulated ray-shooting data. A unique method is devel-
oped here. This method provides quantitative descriptions of the
microstructure that are similar to those identified in the mercury〈 〉

intrusion porosimetry (MIP) development in Part 1 (e.g., VPore/VT

and ˛n) [7]. A benefit of the new development is that it provides the
additional flexibility to interrogate the dense phases of the sam-
ple (i.e., Ni and YSZ) because of the digital representation of the
structure.
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Fig. 1. A 2-D representation of the ray-shooting method used to analyze the resistive
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volume considered, VT = (kı)3, and subsequently divided by the dif-
oss distribution within the sample. Scalar values of the net joule heating populating
ndividual voxels. The ray length and average joule heating of the voxels traversed
re coherently examined.

A phase size distribution (PSD) function is defined for this devel-
pment. This PSD is representative of the ratio of the volume of a
iven phase at a particular phase diameter, D, within a differen-
ial diameter bin width, �D, relative to the total sample volume.
t describes the relative volumetric composition of the individual
hases within the sample. There is a careful distinction between
hese PSDs and those formulated using MIP. These two methods
ddress the sample structure from different perspectives. Both
ethods have their own merits, benefits, and deficiencies, and

hould be viewed as complementary but unique. This topic will
e elaborated upon in the discussion.

Returning to the development of a PSD, the lengths tabulated
y the ray-shooting method are in the form of a column,

[
NVoxels

l

]
,

here NVoxels
l

is the number of unit voxels that are traversed by
ay, l. This column is provided in as a series of double precision,
rrational numbers and can be converted to physical lengths by

ultiplying by the unit voxel length. These ray lengths are charac-
eristic of the structure and are proportional to the cross-sectional
rea of the phase path (i.e., D ∝

√
A). They are considered and

escribed as phase path diameters, D, in this description.
Several assumptions are required to take this set of diameters

o form a PSD. To form the PSD, it is assumed that phase paths that
rovided the diameters are predominately continuous through the
tructure, independent, and do not experience sudden and large
hanges in cross-section. The diameters that have been gathered
rom the detailed structure can be used to define a histogram,
(Di,�D), that delimitates the number of rays, �(Di,�D), in a bin of
iameter, Di, within a differential diameter, �D, that corresponds
o the histogram bin width. The representation of an individual
in of diameter, i, within a differential diameter, �D, is denoted
y the quantities in parenthesis from here on (i.e., (Di,�D). Equal
in widths, �D, are used over a single histogram. The histogram
epresenting the number of rays, N(Di,�D), is defined,

(Di, �D) = �(Di, �D)
(1)
�D

here the distribution function N(Di,�D) has units of inverse
ength (e.g., �m−1). The total number of rays in all bins, �̂, is
urces 195 (2010) 7943–7958 7945

obtained by integrating over all diameters,

�̂ =
∫

N(D) dD =
M-bins∑

i=1

N(Di, �D)�D (2)

as is shown for both a continuous function and the piecewise
histogram containing M-bins. This assumes that a piecewise rep-
resentation of the continuous function is valid.

The number of rays per unit voxel length of centerline, NC.L.
Rays,

for a phase path of a given diameter is needed. Because the cubic
representation of the real structure is implicit, the number of rays
per unit voxel centerline is correlated to the perimeter of the phase
cross-sections for a given path,

NC.L.
Rays = P

ı
+ 4 ≈ Co

(
D

ı
+ 1

)
(3)

where P is the phase path perimeter, ı is the unit voxel length,
and 4 is a geometric constant that arises due to the cubic repre-
sentation of the structure. A geometric constant of proportionality,
Co, is required to scale the quantity in Eq. (3). For square cross-
sections, this constant takes on the value of Co ≈ 4. This geometric
constant requires generalization to represent any number of shapes
of phase cross-sections which can exist in the real structure. Using
inspection, typical number weighted mean diameters values for
this constant range between 3 and 5 for any number of geometric
cross-sectional shapes that are constructed on a cubic lattice. This
provides qualitative support for using this geometric constant as a
constant of integration to normalize the data, as will be described
later in this development.

Eq. (3) may now be extended to describe the number of rays
that would exist for an individual phase path traversing the sample
structure,

N�
Rays ≈ Co

(
D

ı
+ 1

)
��k (4)

where �� is the tortuosity of the phase path and k is the num-
ber of voxels per edge of the cubic structure. Eq. (4) assumes that
the phase path maintains a diameter, D, and a tortuosity that is
representative of the phase within the sample.

The number of phase paths in the sample structure that corre-
spond to bin (Di,�D) can be found by taking the ratio of the total
number of rays in bin (Di,�D) to the number of rays associated with
the phase path of that diameter (Eq. (4)).

�(Di, �D) = 1
Co

N(Di, �D)�D

((Di/ı) + 1)��k
(5)

This quantity is useful, but difficult to interpret. Therefore, the
volume associated with an individual phase path, V�

i
(Di), is approx-

imated,

V�
i

(Di) = C1(Di)
2��kı (6)

where C1 is a second geometric constant that is used to generalize
the relationship between the diameter and cross-sectional area. For
a path with a square cross-section, it will take on the value C1 ≈ 1.

Multiplying the volume associated with a phase path (Eq. (5))
by the number of phase paths that fall within (Di,�D) (Eq. (6)), the
total volume in the associated phase paths is,

�V�
i

(Di, �D) = �(Di, �D)V�
i

= C∗ N(Di, �D)(Di)
2�D

(Di/ı) + 1
ı (7)

where C* = C1/Co. This function is normalized by the total sample
ferential bin diameter to form a distribution function.

�V�
i

(Di, �D)

VT
= �V�

i
(Di, �D)

(kı)3
= C∗ N(Di, �D)(Di)

2�D

(Di/ı) + 1
ı

(kı)3
(8)
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n (Di, �D) = �V�
i

(Di, �D)/VT

�D
= C∗ N(Di, �D)(Di)

2

(Di/ı) + 1
ı

(kı)3
(9)

The normalized PSD, ˛n(Di,�D), represents the volume fraction
f all of the phase paths contained in (Di,�D). This distribution
as units of inverse length (i.e., �m−1) and C* is a combined geo-
etric constant. It will take on the value of C* ≈ 1/4 for square

ross-sections.
This geometric constant, C*, can be generalized for all shapes.

ntegrating ˛n(Di,�D) over all diameters, should provide the phase
olume fraction,

〈
V�/VT

〉
.

V�/VT

〉
=

∫
˛n(D) dD =

∑
˛n(Di, �D)�D (10)

Substituting Eq. (9) into Eq. (10), we find an expression for C* in
erms of

〈
V�/VT

〉
.

∗ =
〈

V�/VT

〉 ı

(kı)3

1∑M-bins
j=1

[
(N(Dj, �D)(Dj)

2/((Dj/ı) + 1))�D
]
(11)

nserting Eq. (11) into Eq. (9), yields a normalized phase size distri-
ution.

n(Di, �D) =
〈

V�/VT

〉
∑M-bins

j=1

[
(N(Dj, �D)(Dj)

2/((Dj/ı) + 1))�D
]

× N(Di, �D)(Di)
2

(Di/ı) + 1
(12)

Two salient features can be noted in the examination of the PSD
n Eq. (12). This distribution can be integrated, as provided in Eq.
13), in a continuous piecewise manner. The relative volume frac-
ion of the phase attributed to regions characterized by a diameter,
, and smaller is the result.

〈
V�/VT

〉∣∣D

0
=

∫ D

0

˛n(D) dD =
Bin-L∑

0

˛n(Di, �D)�D (13)

A normalized form may also be used, to present the percent-
ge of the total volume contained at diameter, D, and smaller was
hown. The second feature that may be recognized is that for all of
he complexity that is present in Eq. (12), the method is still built
pon a simplified geometric construct. Therefore, the integrity of
he method and underlying assumptions can be checked by the
omparison of the normalization constant, C*, to that used during
he theoretical development, C* ≈ 1/4.

.2. Transport phenomena

A requisite analysis of transport phenomena is performed for
his study so that correlations between transport processes and
he quantitative microstructural characterization can be com-
leted. The lattice Boltzmann method (LBM) provides a convenient
ramework for the examination of the transport processes in the
eterogeneous electrode structure. LBM has the ability to capture
he appropriate physics, is amenable to complex geometric struc-
ures, and uses of a regular mesh with high grid independence
17–29]. Detailed reviews on the governing theory and imple-
entation, boundary conditions, and parallel scalability are widely
vailable in the literature [17–29]. The implementation in this study
esembles those reported in previous studies [10,27,30,31], with
he consideration of a second order zero flux boundary condition
t the impermeable phase interfaces [19,32].
urces 195 (2010) 7943–7958

The extension of the LBM theory and methodology for the con-
sideration of the charge transfer processes in the Ni and YSZ regions
is completed using an analogy, and on the basis of the ability of the
LBM algorithm to recover a solution to Laplace’s equation when
evaluating binary molar mass transfer in the absence of viscous
flow [27]. Charge transfer solutions are scaled using analogous non-
dimensional groups to those used for mass transport in past studies
[10,27,31]. In this study, we focus on transport in YSZ; however, the
methods are also amenable to mass transfer and electronic charge
transfer.

The LBM studies used in this work are performed on an SGI Altix
3700. Parallelization is completed using a vertical domain decom-
position scheme. Inter-processor communications are treated
using the message passing interface. Solutions for the transport
processes are examined under steady-state conditions. Conver-
gence of the steady-state solution is monitored using the total
and species conservation principles. Solutions are considered when
converged and the error in the species balance was less than 0.1%.

Post-processing of the results is required to identify the resistive
losses due to joule heating and display the scalar field associated
with these losses in finite regions of the structure. This analysis is
accomplished by using the flux outputs from the LBM analysis at
each voxel within the structure. The net joule heating in a finite
voxel at a position (i,j,k) can be described as,

Q
′′′

(i, j, k) = �
[
ix(i, j, k)2 + iy(i, j, k)2 + iz(i, j, k)2] (14)

where Q′′′(i, j, k) is the heat liberated per unit volume at a given
voxel position (i,j,k), � is the material’s resistivity, and ix(i, j, k) is
the current density in the x-direction as the corresponding voxel
location. The heat release, Q′′′, can be evaluated on a per unit sam-
ple volume or per unit phase volume basis. The net heat release at
position (i, j, k) in terms of the net heat released, or absolute value,
can also be shown as,

Q (i, j, k) = Q ′′′(i, j, k) dV (15)

and is also of use. In this form, dV is the finite voxel volume.
Using the scalar representation of these heat release quantities,

they are written to a file that mirrors the geometric structural file
for subsequent analysis. This file maintains a scalar heat release
quantity at each voxel, representative of the heat release over that
voxel volume. Separate files are constructed using the both the net
heat release and that specific to the volume of the voxel. These files
are used in subsequent sections.

3.3. Resistive loss and microstructure-induced resistive loss
distributions

Using the transport analysis data files discussed in Section 3.2,
the scalar resistive loss values can be examined in a complemen-
tary manner to the geometric structures in the geometry files. A
conceptual representation of this file containing resistive loss val-
ues is shown in Fig. 1, where a phenomenological 2-D cross-section
is shown. In Fig. 1, a representative ray is shown in a structure that
is identical to the structure of the geometry file, which was used to
analyze the PSDs of these regions in Section 3.1. However, in Fig. 1,
additional information concerning the resistive losses existing in
each of the voxels that are traversed is available. This provides the
ability to coherently examine and interpret the detailed geometry
and the associated resistive losses. The end result of this devel-
opment is the formation of a resistive loss distribution (RLD). The
resistive losses in this distribution are those that arise from Joule

heating.

An elaboration upon its physical interpretation and implica-
tion on our understanding of the heterogeneous SOFC electrode
microstructure is merited prior to detailing the methods used
to perform this analysis. It is well understood that any attempt
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o force a large current through a narrow region can result in
ncreased resistive losses due to joule heating. This represents
he irreversibility, or entropy generation, attributed to the charge
ransfer processes. This irreversibility can be especially problematic
n structures that are not composed of materials that are ideal con-
uctors due to an increased resistivity. The same goes for regions
ith geometric constrictions, or regions of reduced cross-section.

n the heterogeneous structures that are representative of the SOFC
node, the implication and effects of the phase-network are difficult
o interpret. Underlying these difficulties is an insufficient under-
tanding of the details of the heterogeneous structures themselves.
nterpretations of the phase structure can aid this understanding,
ut the full impact of the phase structure is not known without dis-
rete analysis. To better appreciate and quantify the connections
etween the structural features within the heterogeneous phase
tructure and the resulting irreversibility, some unifying quantita-
ive analysis is required.

A method that is capable of identifying correlations between the
oule heating losses and the detailed phase structure can provide
ome considerable insights. The ray-shooting method used in Sec-
ion 3.1 provides a useful framework. By utilizing this method, a
onsistent description of the phase diameter is provided while also
llowing the examination of a complementary structure detailing
he joule heating losses, as is demonstrated in Fig. 1.

.3.1. Resistive loss ray-shooting methods
Some additional clarification of the use of the ray-shooting

ethod to examine resistive losses is necessary before any data can
e examined. In Section 3.1, the ray-shooting process is described

n detail. Here, an additional ray is shot in the complementary joule
eating data structure in this analysis. This ray and has the exact
ame launch and termination points as the one used to examine
he geometric structure. In the resistive loss structure, the resistive
osses in each individual voxel are summed as the ray traverses this
tructure. This permits an average resistive loss for each ray to be
alculated.

′′′
l = 1

NVoxels
l

∑
path-l

q′′′(i, j, k) (16)

In Eq. (16), q′′′
l

is the average joule heating per unit volume for
ay-l, with a ray length of NVoxels

l
. The full geometric and joule heat-

ng data files are examined in a coordinated manner. A two-column
able is generated to record the values of the number of voxels tra-
ersed by each ray and the complementary average joule heating
ecognized for that ray (i.e.,

[
NVoxels

l
, q′′′

l

]
). This table provides the

ata which is used with the remainder of this development.

.3.2. Analytic development
The table of the complementary ray lengths and average joule

eating values are concurrently examined to interpret the data col-
ected with the ray-shooting method. When the ray lengths, or
iameters, are broken down into the histogram N(Di, �D) (i.e., Eq.
1)), the average joule heating values associated with these same
ays are concurrently summed for these corresponding rays in bin
Di, �D). This permits the sum of the average joule heating values
or the bin to be averaged a second time, using the number of rays
alling in the same bin for the ray lengths, �(Di, �D).

∑
l ql

′′′
∣∣
Di,�D
(Di, �D) =
�(Di, �D)

(17)

The average joule heating in the phase’s structure, 	(Di, �D), is
n (W m−3). This representation makes it a property of the detailed
tructure.
urces 195 (2010) 7943–7958 7947

As in Section 3.1.2, a formal distribution function, 
 (Di, �D),
is formed by dividing Eq. (17) by the differential bin width, �D.
This distribution function is representative of the net volumetric
joule heating in all phase paths in the structure corresponding to
(Di, �D). This distribution function has a great deal of merit in its
own right; however, it is of benefit to link this manipulation back
to both the structure and initial transport analysis. It is operated
upon by the net volume that was determined for these same phase
paths, using the tools developed in Section 3.1. In Eq. (7), the vol-
ume of all phase paths in the sample volume is defined. Combining

 (Di, �D) with Eq. (7), a new distribution function is formed. This
distribution function is representative of the net joule heating, in
W �m−1, within the structure.

�n(Di, �D) = 
 (Di, �D)�V�(Di, �D) = ı

Co�D

	(Di, �D)(Di)
2

(Di/ı) + 1
(18)

The integration of this distribution function over all differential
diameters results in the net joule heating.

Qnet =
∫ ∞

0

�n(D) dD ≈
∑

�n(Di/ı) + 1�D (19)

In Eq. (19), Qnet is the net joule heating in the volume, in W. This
provides a framework for determining the integration constant, Co,
and resistive loss distribution, �n(Di/ı) + 1.

Co = ı

Qnet

M-bins∑
j=1

[
	(Dj, �D)(Dj)

2

(Dj/ı) + 1

]
(20)

�n(Dj, �D) = Qnet

�D
∑M-bins

j=1

[
	(Dj, �D)(Dj)

2/((Dj/ı) + 1)
]

× 	(Di, �D)(Di)
2

(Dj/ı) + 1
(21)

The geometric constant in Eq. (20) is evaluated as a function
of the net joule heating in the system. This provides an intuitive
normalization based upon that developed for the phase size dis-
tribution. The final resistive loss distribution, �n (Di, �D), permits
the explicit connection between two independent analyses (i.e., the
PSD and transport phenomena). It combines the two analysis to
provide a quantitative measure of the relative volume associated
with a given phase diameter in conjunction with its net contribu-
tion to the resistive, or joule heating, losses.

As with the PSD, a cumulative form of the resistive losses in
Eq. (21) can be shown. Integrating the resistive loss distribution
functions with respect to the differential diameter, �D, from a zero
to a diameter, D, a cumulative distribution is formed. This function
represents the net joule heating hat resulted occurred in regions of
phase diameters, D, and smaller.

Qcum
∣∣D

0
=

∫ D

0

�n(D) dD =
Bin-L∑

0

�n(Di, �D)�D (22)

3.3.3. Microstructure-induced resistive loss distribution (MRD)
A final development is a microstructure-induced resistive loss

distribution (MRD). Direct comparison of the effects of the struc-
ture on the transport losses is difficult in materials like the

porous SOFC electrode, which has materials (i.e., pore, Ni, and
YSZ) with significantly different transport coefficients. A normal-
ization which accounts for the bulk resistivity of the respective
phases/processes is merited for direct comparison. By normaliz-
ing these distributions, the direct quantitative comparison of the
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ano/microstructure’s contributions to resistive losses in the het-
rogeneous sample structure is permitted.

To do so, the RLD is normalized for the resistive effects attributed
o the bulk materials, structures, and conditions. This is achieved
y dividing Eq. (21) by the resistive losses attributed to a bulk
egion of the phase being considered at comparable conditions to
solate the nano/microstructural contributions to the losses. The
esistive losses attributed to bulk regions of the considered phase
, are defined as the product of the domain volume VT, square of

he superficial current density icell, which is also referred to as the
peration current density, and the bulk material resistivity, �� . This
rovides the MRD, which descries the resistive losses induced by
he microstructure.

∗
n(Di, �D) = �n(Di, �D)

��icell
2VT

(23)

The MRD, ˝∗
n(Di, �D), takes on the units of inverse length,

m−1.

. Results and discussion

.1. Phase size distributions (PSD)
Ray-shooting methods have been used in several studies to form
hase size distributions for quantitatively examining details of the
ore, Ni, and YSZ regions of reconstructed sample microstructures
1,2]. We will provide additional details with regard to these results,

ig. 2. The phase size distribution for four 203 voxel3 test structures, (a–d), is shown. T
ross-sectional diameters are circled. The trend lines are provided to guide the eye.
urces 195 (2010) 7943–7958

their verification/validation, and their interpretation. Some inde-
pendent analysis is also provided in this discussion.

4.1.1. Test structures
This discussion begins with the examination of four simplified

structures, which have been generated to demonstrate specific
aspects of these methods. These structures serve as simplified
checks of the approach. They are intended to support the discussion
of the methods developed and are used to verify the numeric meth-
ods and assumptions. These structures are rendered in Fig. 2, where
they are provided along with their respective PSD. These structures
may provide reasonable interpretations of regions within actual
samples but do not maintain the same complexity and are there-
fore easier to see direct comparison between the structures and the
PSDs. They are constructed using a 203 voxel lattice, which is taken
as a 23 �m3 volume making the edge length of an individual voxel,
ı ≈ 100.5 nm. The phase size distributions are provided with the
structural renderings in Fig. 2, which are calculated using Eq. (12),
for the structures.

Three observations are made from this analysis. First, the promi-
nent phase diameters are clearly visible. These primary diameters
were set during the generation of the structures and each is cir-

cled in the appropriate subfigures. The agreement demonstrates
the method’s ability to capture the primary features of these struc-
tures. Second, there is some broadening of the distribution near the
base of the primary peaks. This broadening is due to the voxel repre-
sentation, discrete direction vectors, and the number of bins used to

hese structures are considered as 23 �m3 structures (i.e., ı = 0.1 �m). The primary
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escribe the data. This broadening is most pronounced in Fig. 2(c),
hich uses irregular cross-sections. These irregular cross-sections

re responsible for the bumpy looking structure and secondary fea-
ures at diameters surrounding the primary feature. These types of
eatures, promoted by the voxel representation, can result in some
oise in the analysis and in some statistical averaging of the pri-
ary features. These effects are anticipated and discussed in the

heoretical development. Third, the tortuous structures have some
nonymously large diameter contributions in the PSDs. This is evi-
ent in Fig. 2(b) and (c). These points are a result of several rays
eing shot down the “throat” of a phase path; in a direction parallel
o the centerline. Likewise, in Fig. 2(d) a data point off of the figure
xists. This feature has been suppressed because it is larger than
he edge length of the volume itself. It is a result of the rays com-
ng from the corners of the large square regions at the ends of the
onstricted regions. The rays coming from these types of features
re an accepted product of the ray-shooting method.

The rays that have traveled down the throat of a phase path can
e accounted for to some degree. In Eq. (4), it is recognized that
�
Rays rays can be expected for a phase path of diameter, D, which

raverses the full sample. Large cross-section should have consid-
rably more rays associated with an individual phase path than a
mall cross-section. Using the number that is anticipated for a full
hase path of a discrete diameter, it can be used to build some intel-

igence into the interpretation of the tabulated ray-shooting data.
straight, square phase path with a cross-sectional diameter, D,

hould see approximately 4kD/ı rays. This limit, or a similar vari-
nt, can be used to determine if there are a reasonable number of
ays in a given histogram bin to represent at least one single phase
ath, or whether it may be reasonable to throw these rays out.
lthough there is some clear rationale to this approach, a straight

hase path of constant diameter is most likely not a reasonable rep-
esentation of a real heterogeneous structure. If localized regions
f a larger cross-section exist within the structure, the associated
ays could be improperly thrown out. Therefore, this approach is
nly provided as a point of discussion.

ig. 3. The grid dependencies for the ray-shooting based phase size distribution method
iameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set 2: 1.0 and 0.5 �m, and (c) Set 3: 0.5 and 1
onstant, C* (Eq. (11)) are examined as a function of the differential bin diameter, �D, a
own into to obtain this differential diameter, �D.
urces 195 (2010) 7943–7958 7949

4.1.2. Grid dependence studies
The analysis of the test samples presented in Section 4.1.1,

considers 8 histograms bins; however, it is important to have a
methodology in place for the selection of the histogram bin den-
sity as we move to larger heterogeneous structures. The choice of
the bin density is of importance to the independent repeatability
of the phase size distributions. Several grid dependence studies are
performed to provide insight.

We begin this discussion with the sphere-packing generated
structures. A grid dependence study is provided for the sphere-
packing generated structures in Fig. 3. The ray-shooting method
is used to tabulate phase diameters for each phase of these indi-
vidual structures. These tabulated diameters are consistently used
throughout this study (i.e., for different grid densities). This data
is unique to the structure and is used to populate histograms
with increasing number of bins (e.g., 5, 10, 20, 30, 40, 50, etc.).
As the number of bins that are populated by this tabulated data
is increased, the mean phase diameter of the histogram and the
normalization constant C* (Eq. (11)) are calculated.

Using Eq. (11), the geometric normalization constants and the
mean histogram phase diameter are shown in Fig. 3. There are two
unique forms of the independent axis in Fig. 3: (i) the number of
bins in the histogram and (ii) the differential bin diameter, �D.
The differential bin diameter is calculated by dividing the differ-
ence between the maximum and minimum diameters tabulated
using the ray-shooting method by the number of bins to be con-
sidered. It is not feasible to resolve differential diameters smaller
than a single voxel; therefore, the minimum differential diameter
is fixed for each analysis. The maximum number of bins that can
be considered also has a practical limit. This limit corresponds to
the maximum number of bins that can be used to between the

maximum and minimum phase diameters identified by the ray-
shooting method without using differential diameters smaller than
the length of a single voxel. In Fig. 3, the practical limits for the
respective independent axis are denoted with bold vertical lines.
These lines are color coded to the appropriate trends for the sub-

are examined for the sphere-packing generated structures with Ni and YSZ particle
.0 �m, respectively. The mean phase diameter of the histogram and the geometric
nd the corresponding number of bins which the ray-shooting method was broken
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Fig. 4. The grid dependencies for the ray-shooting based phase size distribution method are provided in terms of the mean phase diameter of the histogram and the geometric
constant, C* (Eq. (11)). The dependence of the mean diameter of the histogram on differential bin diameter, �D, for (a) Sample ID 1 and (b) Samples ID 2 and ID 3; as well
a bins fo
t ple I
( r the
n

fi
a
w
o

t
F
a

F
a
(

s dependence of the mean phase diameter calculated based upon the number of
he normalization, C* , as a function of the differential bin diameter, �D, for (e) Sam
g) Sample ID 1 and (h) Samples ID 2 and ID 3. The bold vertical lines indicate eithe
umbers of discernable bins.

gures that use the number of histogram bins as the independent
xis. A grid dependence study is also performed for Samples ID 1–3,
hich is provided in Fig. 4. The unique voxel resolution and number

f voxels available, provides unique practical limits for these cases.

Several observations can be made regarding Figs. 3 and 4. First,

he asymptotic behavior observed for each trend in Sets 1–3 in
ig. 3, as well as similar behavior for all three phases of Sample ID1
nd the pore phase of Samples ID 2–3 in Fig. 4, demonstrates that

ig. 5. The phase size distributions are provided for the sphere-packing generated struc
nd 0.5 �m, and (c) Set 3: 0.5 and 1.0 �m, respectively. Trend lines are provided to guide t
d) Set 1 (e) Set 2, and (f) Set 3, are also provided.
r (c) Sample ID 1 and (d) Samples ID 2 and ID 3. The geometric constant used for
D 1 and (f) Samples ID 2 and ID 3; and its dependence on the number of bins, for
minimum differential diameter, �D, as dictated by the voxel size or the maximum

grid independence for the PSD methods is achieved for all cases.
Because the asymptotic behavior is observed prior to the practical
limits for these trends, we have confidence that a consistent rep-
resentation of the structure can be obtained. It also elucidates the

importance of performing these types of studies, since grid inde-
pendence can be reached at substantially different binning levels
for different structures (e.g., independence at ∼10 bins in Fig. 3
versus ∼40 bins in Fig. 4).

tures with Ni and YSZ particle diameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set 2: 1.0
he eye. The corresponding cumulative phase size distributions for these structures
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On the basis of the grid dependence studies, the numbers of
ins used in the phase size distributions, or volume fraction distri-
utions, are chosen in such a manner that the differential diameters
onsidered were larger than the voxel length. In the generated
tructures, 50 bins are used so that a consistent number of bins
ould be considered and the selection corresponds to half the
olume edge length for volumetric studies. In the samples recon-
tructed from XCT data, a differential diameter slightly less than
wice the voxel length was chosen, due to the discrepancy in voxel
ize and resolution in the XCT imaged samples. This corresponds to
pproximately 75, 75, and 50 bins for the Ni, YSZ, and pore phases
f Sample ID 1, respectively, 50 bins for Sample ID 2, and 75 bins for
ample ID 3. These selections are well within the region of grid inde-
endence. As a qualitative check, it is recognized that the geometric

ntegration constant is comparable to the 1/4 noted in the theoret-
cal development in Figs. 3 and 4. This provides further evidence of

successful implementation of the model.

.1.3. Phase size distributions
With the histogram bin densities set, the phase size distribu-

ions for the generated structures are examined. In Fig. 5, the phase

ig. 6. The volumetric dependencies of the phase size distribution in 33, 43, and 53 �m3 su
istributions are shown for the Ni, YSZ, and pore regions, for the sets with Ni and YSZ par
.5 and 1.0 �m, respectively. The data is actually discrete; trend lines are provided to gui
urces 195 (2010) 7943–7958 7951

size distributions, as described by Eq. (12), are provided for the
sphere-packing structures. Complementing the phase size distri-
butions for these generated structures is a cumulative form of these
same distributions, which represents the volume fraction of each
phase contained in regions of diameter, D, and smaller.

An interesting observation is made regarding Fig. 5. In Fig. 5(a)
and (d), which are measurements made on Set 1, there is a sharp
peak for the Ni and YSZ phases at a diameter of approximately 1 �m.
The Ni and YSZ phase size distributions of Set 2, shown in Fig. 5(b)
and (e), have large contributions from diameters of 1 and 0.5 �m,
respectively. Likewise, the Ni and YSZ phase size distributions of
Set 3, shown in Fig. 5(c) and (f), have large contributions from
diameters of 0.5 and 1 �m, respectively, with an additional YSZ
peak at 0.5 �m. These observations are significant, because these
diameters directly correspond to the constituent particle diameters
used to generate these structures, which are provided in Table 1.

The additional peak in the YSZ phase size distribution for Set 3 is
believed to be a product of the Ni being permitted to overwrite
the YSZ regions. The Ni in this set maintains a 0.5 �m diameter
itself, and so this is likely similar phenomena to a harmonic sub-
set.

bsets of the sphere-packing generated structures. From left to right, the phase size
ticle diameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set 2: 1.0 and 0.5 �m, and (c) Set 3:
de the eye.
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The primary Ni and YSZ particle diameters are reflected in
he phase size distributions in Fig. 5; providing confidence in the

ethod and the types of details that can be resolved. This can be
aken as an additional qualitative check of the method. While the
i and YSZ regions are generated using discrete particles, the pore

pace in all three generated structures was taken as those regions
evoid of a Ni and/or YSZ particle. In Fig. 5, the pore space main-
ains a primary peak at approximately a 0.5 �m diameter in all
hree data sets. Secondary peaks are unique in all three data sets.
he 0.5 �m diameter is a harmonic, or subset, of the constituent
article sizes used in all three generated structures. Without the
se of discrete particles for the pore regions, the observation of
armonic subsets of the Ni and YSZ particle sizes is not unex-
ected. Finally, all three phases in all three data sets do exhibit
ome broadening. This is most pronounced with the void, or pore,
egions which did not use discrete particles. As discussed with the
est, or calibration, structures, this is expected. In a heterogeneous

tructure, such as these generated structures, this broadening can
esult not only from the discrete analysis as discussed with the
est structures, but also from a range of diameters existing in the
tructure due to the overlap and over-writing of the constituent
hases.

ig. 7. The volumetric dependencies of a normalized form of the cumulative phase size di
rom left to right, the phase size distributions are shown for the Ni, YSZ, and pore regions
: 1.0 and 0.5 �m, and (c) Set 3: 0.5 and 1.0 �m, respectively. The average of the three tre
urces 195 (2010) 7943–7958

4.1.4. Effect of volumetric dependence on phase size distributions
As with our investigation of the heterogeneous samples in Part

1 [7], the effects of the sample volume considered to calculate the
phase size distributions needs to be examined. This is intended to
address the question of whether the phase size distribution devel-
oped is statistically representative of the structure, and if there is a
volumetric dependence. To examine these details, some volumetric
dependency studies are performed using the same sphere-packing
structures. For this study, 33, 43, and 53 �m3 subsets of these same
generated volumes are repeatedly analyzed with the ray-shooting
method. The phase size distributions from these volume subsets
are provided in Fig. 6. In Fig. 6, the phase size distribution for the
Ni, YSZ, and pore regions, respectively, are shown for the three sets
of generated structures. To maintain a consistent basis for this anal-
ysis, the selection of the number of bins in the histogram was set to
half the number of voxels along the edge of the cubic volume, k/2. If
a volume smaller than the primary feature sizes were considered,

there could be a substantial variation; however, is the consistent
representation of the structure in all cases is noted.

This consistency is encouraging; however, a more quantitative
measure is needed. The analysis of the phase size distributions is
discrete with unique numbers of bins and bin-locations; therefore,

stribution in 33, 43, and 53 �m3 subsets of the sphere-packing generated structures.
, for the sets with Ni and YSZ particle diameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set
nds is used for statistical analysis.
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as well as the sphere-packing generated structures. A complete
review of these results is not the purpose of this study. These studies
are performed so that their results can be used in the proceed-
ing section for the demonstration and validation of resistive loss
distribution functions.

Table 2
Resistive losses observed in test structures.

Structure Volume fraction i, A cm−2 Q′′′ , W m−3 Q, W

(a) 0.260 0.5 0.395 × 108 0.3 × 10−9

1.0 1.579 × 108 1.3 × 10−9

1.5 3.549 × 108 2.8 × 10−9

2.0 6.317 × 108 5.1 × 10−9

(b) 0.099 0.5 2.547 × 108 2.0 × 10−9

1.0 10.189 × 108 8.2 × 10−9

1.5 22.929 × 108 18.3 × 10−9

2.0 40.799 × 108 32.6 × 10−9

(c) 0.162 0.5 1.017 × 108 0.8 × 10−9

1.0 4.063 × 108 3.3 × 10−9

1.5 9.134 × 108 7.3 × 10−9
K.N. Grew et al. / Journal of Po

he discrepancies in the respective trends are not easily evalu-
ted as a quantitative measure of error. Further, because the points
re discrete, interpolation is not valid. To provide a quantitative
easure of the effects of the volume considered, we revert to the

umulative PSD. By doing so, the trends become smooth and can
e considered as piecewise continuous. With this representation of
hese cumulative phase size distributions, the data can be interpo-
ated to a consistent grid and compared on a statistical basis. For
his analysis, these cumulative phase size distributions are normal-
zed as a fraction of the total phase volume so that the trends can
e compared. This is done to negate any effects introduced due to
ifferences in the volume fraction of the respective phases for the
ifferent volumes examined.

The cumulative phase size distributions for the 33, 43, and
3 �m3 volumes, normalized to represent the fraction of the total
olume subsumed by that phase, are provided in Fig. 7. The numeric
verage of the three individual data sets is also provided. Using
his average, the error between the respective trends can be deter-

ined. The average error in the distributions is calculated,

Error = 100%
1
M

M∑
i=1

max
(∣∣y(Di) − y(Di)

∣∣)
y(Di)

(24)

here the value of a cumulative distribution, y(Di), and the average
f the three cumulative distributions, y(Di), are evaluated at each
iameter of, Di, for all M-bins. The mean percentage error from the
verage cumulative distribution for the Ni, YSZ, and pore regions
f the sphere-packing structures are 11.2%, 4.1%, and 8.8%, respec-
ively, for Ni and YSZ particles 1.0 �m in diameter (Set 1); 9.1%,
.1%, and 3.2%, respectively for 1.0 �m Ni particles and 0.5 �m YSZ
articles (Set 2); and 7.5%, 2.7%, and 5.5%, respectively, for 0.5 �m
i particles and 1.0 �m YSZ particles (Set 3). This provides an aver-
ge error for all three data sets of 6.2%. This agreement provides
easonable confidence in the consistent use of these methods for
nique volume sizes.

.1.5. Independent phase size distributions validation
The final point of validation that is provided is a comparison of

iameters in Samples ID 2 and ID 3, as determined by the MIP and
ay-shooting methods. This analysis is provided in Fig. 8, where
he distributions are shown in their cumulative form so that they

ay be directly compared. In Fig. 8, two representations of the ray-
hooting cumulative pore volume fraction are compared to that
hich is obtained from the MIP experiment Samples ID 2 and ID

. For the ray-shooting data, (i) an unadulterated form and (ii) a
orm that considers a cutoff to filter the phase size distribution are
onsidered. The cutoff forces the distribution to consider only data
hat contains at least the number of rays that would be required for
straight square pore of diameter, D, to traverse the sample volume.
his cutoff is intended to remove volumes that can be associated
ith rays that have traversed the throats of the pores in the analysis

nd is formed on an intuitive foundation, as discussed in Section
.1.1.

While agreement between the independent methods improved
n Fig. 8 with the cutoff, it is recognized that the mismatch at large
iameters is a product of the unique methods and assumptions.
pecifically, as discussed with Fig. 6 of Part 1 [7], the MIP actu-
lly measures the throats of the pores. This tends to weight the
ore-phase size distribution towards the smaller pore diameters
nd neglects the volumes attributed towards large diameters. This

s the opposite of the ray-shooting methods, where the data is often

eighted toward the larger phase diameters due to rays that have
raveled down the throat of phase paths. The improved agreement
ith the cutoff applied to the ray-shooting results is indicative of

his point.
Fig. 8. The cumulative pore volume fraction is plotted versus pore diameter, D, as
determined by the ray-shooting method and mercury intrusion porosimetry (MIP)
for Samples ID 2 and ID 3. The ray-shooting cumulative pore volume fraction is
shown for no cutoff (open symbols) and a 4kL/ı ray cutoff (closed symbols).

Because the MIP and ray-shooting methods have been devel-
oped as unique but complementary interrogations of the structure
with their own merits and limitations, this cutoff for the ray-
shooting method is shown only for the sake of discussion and
validation. Broader analysis and independent validation studies
are necessary for examining the validity of such filtering type
processes. As a result, all analysis presented in this and previous
works that use similar ray-shooting methods do not use a cutoff
methodology.

4.2. Transport phenomena

In the SOFC anode, the ionic, electronic, and mass transport pro-
cesses occur in the YSZ, Ni, and pore regions, respectively. These
processes are considered in the context of some test structures
2.0 16.252 × 108 13.0 × 10−9

(d) 0.265 0.5 1.143 × 108 0.9 × 10−9

1.0 4.573 × 108 3.7 × 10−9

1.5 10.298 × 108 8.2 × 10−9

2.0 18.314 × 108 14.7 × 10−9
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In lieu of a complete discussion on the results obtained from

hese studies, some specific notes, details, and implications of the
ases considered are discussed. First, the four structures used to
emonstrate the capabilities of the phase size distributions in Fig. 2
re used for similar purposes. These structures provide clean, con-
eptual structures, to test and examine the methods developed in

ig. 9. The magnitude of the scalar resistive losses in the YSZ regions of a 33 �m3 region o
ets with Ni and YSZ particle diameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set 2: 1.0 and 0.5

m−3 and maintain a consistent intensity scale.

ig. 10. The resistive loss distributions for the four test samples (a–d) are shown on th
econdary axis. The test structures are taken as YSZ at 1073 K, in a 23 �m3 volume, with cu
he eye.
urces 195 (2010) 7943–7958

the proceeding section. For these studies, the structures are consid-

ered as being comprised of YSZ at 1073 K with an ionic conductivity
of 4.28 S m−1 [33]. Current densities of 0.5, 1.0, 1.5, and 2.0 A cm−2

are passed through the structures, which are applied as total fluxes.
In other words, the Faradaic portion of the electrochemical oxi-
dation process is neglected at this time. These cases can also be

f the sphere-packing structures at 1073 K and a current density of 1 A cm−2 for the
�m, and (c) Set 3: 0.5 and 1.0 �m, respectively. The resistive losses are reported in

e primary axis with the corresponding phase size distribution is reported on the
rrent densities of 0.5, 1.0, 1.5, and 2.0 A cm−2. The trend lines are provided to guide
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epeated for mass transport and electronic transport in the pore and
i regions, respectively, but are inconsequential for the purposes
f this demonstration. As with the phase size distribution analysis
erformed on these structures, they are considered as being 2 �m
er edge, or 23 �m3. The resistive losses of the structures in Fig. 2
re provided in Table 2. These results are used for the normalization
nd identification of the geometric constant used in the resistive
oss distribution functions in Section 4.3.

A second set of transport studies are also performed on a 33 �m3

ubsets of the sphere-packing structures. These volumes are sub-
ected to current densities of 1 A cm−2. Again, the Faradaic portion
f the electrochemical oxidation process is neglected. The mass
ransport and electronic charge transport can be considered; how-
ver, only those associated with the YSZ phase are reported here.
his is done for consistency and due to the computational expense
nvolved. The net resistive losses observed in these structures are
.7 × 10−9, 14.0 × 10−9, and 9.1 × 10−9 W for the sphere-packing
enerated structures with Ni and YSZ particle diameters of, 1.0 and
.0 �m, 1.0 and 0.5 �m, and 0.5 and 1.0 �m, respectively. These
esistive losses were calculated by integrating the scalar volume-
pecific resistive losses over all of the phase volume within the

tructure. These regions have an YSZ volume fraction of 0.300,
.271, and 0.325, respectively, providing volume-specific resistive

osses of 2.728 × 108, 4.933 × 108, and 3.219 × 108 W m−3, which
ere calculated by dividing the net resistive loss by the cube vol-
me. For visualization purposes, the 3-D scalar resistive losses due

ig. 11. The cumulative resistive loss and cumulative phase size distributions for four t
esistive loss distribution is shown on the secondary axis. These test structures are take
.0 A cm−2. The trend lines are provided to guide the eye.
urces 195 (2010) 7943–7958 7955

to Joule heating in 33 �m3 subsets of the YSZ regions of these three
generated data sets are rendered in Fig. 9. Increased Joule heat-
ing is observed in constricted regions. These regions seem to occur
where there is the partial overlap of two YSZ particles and/or partial
obstruction from being overwritten with Ni.

4.3. Resistive loss and microstructure-induced resistive loss
distributions

The extension of the methods that are used to examine the
phase size distributions, to provide a quantitative measure of how
these regions contribute to transport-related losses within the sys-
tem, are examined in this discussion. The heat liberated due to
Joule heating is examined in the context of the different phase
diameters within the system. This approach can provide eventual
insights as to how different microstructures contribute to polar-
ization resistances, the effects of microstructural degradation on
transport-related losses, and potential sources of degradation.

4.3.1. Resistive loss distribution in test structures
We begin this study by examining the same test structures that
were considered during the development of the phase size distri-
butions, which are rendered in Fig. 2. As discussed in Section 4.2,
these structures were subjected to an ionic current density of 0.5,
1.0, 1.5, and 2.0 A cm−2, where the rendered regions were consid-
ered as being comprised of YSZ at 1073 K. The net resistive losses

est samples (a–d) are provided on the primary axis. The microstructure-induced
n as YSZ at 1073 K, in a 23 �m3 volume, with current densities of 0.5, 1.0, 1.5, and
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or these cases are provided in Table 2. In Fig. 10, the resistive loss
istributions and phase size distributions are shown for these cases.
he resistive loss distribution is shown on the primary axis and the
hase size distribution on the secondary axis. The magnitude of the
esistive loss distribution increases with increasing current density.
t is interesting to note that for Fig. 10(a)–(c), these resistive loss
istributions follow the phase size distributions quite well. This

mplies that the phase diameters contributing to the largest vol-
mes within these structures are also responsible for the largest
ontributions of Joule heating. This is not unexpected, as the current
asses through discrete regions with controlled structure. These
tructures have consistent cross-sections and are without constric-
ion. The net current carried by a given region is proportional to its
ross-section.

Moving to Fig. 10(d), the resistive loss distribution does not
irectly follow the phase size distribution. Rather, most of the net
esistive losses are found to be attributed to the smaller phase

iameters. These resistive losses are specifically attributed to the
onstricted region, despite the much smaller volume attributed to
his region. The rationale for this occurrence is that the current
eing forced through this constriction results in resistive losses due
o Joule heating that outweigh the impact of the region’s smaller

ig. 12. The normalized cumulative phase size (closed symbol) and resistive loss distri
ith Ni and YSZ particle diameters of (a) Set 1: 1.0 and 1.0 �m, (b) Set 2: 1.0 and 0.5 �m

ymbols) for these structures are provided on the primary axis of (d) Set 1, (e), Set 2, and (
icrostructure-induced resistive loss distributions are provided for (g) Set 1, (h) Set 2, an
urces 195 (2010) 7943–7958

volume. As expected, this effect is amplified with increasing cur-
rent density due to Joule heating losses scaling with the square of
the magnitude of the current density.

4.3.2. Microstructure-induced resistive loss distribution in test
structures

In the preceding section, the resistive loss distributions are
dependent upon the operating conditions. The applied current den-
sity, as well as factors such as the material’s resistivity, can result
in unique trends. This makes it difficult to extract the underly-
ing effect of the microstructure on the transport processes. The
microstructure-induced resistive loss distribution was developed
to negate these discrepancies so that independent materials and
operating conditions can directly be compared on a consistent
basis. This provides a means of quantifying the effects of the
microstructure on transport-related losses such that they are a
property of the microstructure and not the specific model param-

eters or case.

Using the same test structures that have been used throughout
this manuscript, Fig. 11 provides both the normalized cumula-
tive resistive loss distribution, as well as normalized cumulative
phase size distribution, on the primary axis. The microstructure-

butions (open symbols) in a 33 �m3 YSZ region of the sphere-packing structures
, and (c) Set 3: 0.5 and 1.0 �m, respectively. The resistive loss distributions (open
f) Set 3, with the phase size distribution (closed symbol) on the secondary axis. The
d (i) Set 3.



wer So

i
a
c
p
t

m
o
t
m
S
n
w
F
t

4

a
s
T
1
m
r
d
A
b
v
s

W
d
b
r
f
s
c
g
a
m

a
t
s
i
c
S
Y
2
d
t
s
t
s
t
a
s

l
b
(
F
i
t
r
t

K.N. Grew et al. / Journal of Po

nduced resistive loss distribution is provided on the secondary
xis. The normalized cumulative distributions represent the per-
entage of the respective distributions attributed to regions of a
hase diameter, D, and smaller. The microstructure-induced resis-
ive loss distributions are calculated using Eq. (23).

Several observations can be made regarding Fig. 11. First, the
icrostructure-induced resistive loss distributions have collapsed

n top of each other for each unique current density. This confirms
hat the normalization used to create this distribution function

akes this distribution a function of the microstructural details.
econd, the normalized cumulative phase size distribution and the
ormalized cumulative resistive loss distributions correlate quite
ell in Fig. 11(a)–(c), but not so for Fig. 11(d). This observation in

ig. 11(d), again points to the effect of the constricted region main-
aining resistive losses that outweighs its volumetric contribution.

.3.3. Sphere-packing generated structures
To demonstrate the effects of the resistive loss distributions

nd microstructure-induced resistive loss distributions, 33 �m3

ubsets of the sphere-packing generated volumes are examined.
he YSZ regions are subjected to a 1 A cm−2 current density at
073 K. The phase size distribution, resistive loss distribution,
icrostructure-induced resistive loss distribution, and the cor-

esponding normalized cumulative phase size and resistive loss
istributions are examined. These results are presented in Fig. 12.
s with the volumetric dependency studies for the phase size distri-
ution analysis, k/2 bins are used in this study. Because the 33 �m3

olume contains 613 voxels, data populates 30 bins for the phase
ize distribution and the resistive loss distribution analyses.

There are a number of observations that can be regarding Fig. 12.
e begin by examining the normalized cumulative phase size

istribution and the normalized cumulative resistive loss distri-
ution, where both are plotted as a percentage of their total for
egions of phase diameter, D, and smaller. In Fig. 12(a)–(c), these
orms of the cumulative distribution are shown for the three sets of
phere-packing generated structures, respectively. The two trends
orrelate reasonably well in each of these sub-figures. This sug-
ests that the contributions within the structure from volumetric
nd microstructural effects (e.g., constrictions) are of comparable
agnitude and/or volumetrically dominated.
Moving to the resistive loss distributions in Fig. 12(d)–(f), which

re shown on the primary axis with the phase size distribution on
he secondary axis, the unique properties of the same respective
tudies can be examined. The correlation between the two trends
s again noted in each of the sub-figures. The most significant dis-
repancies occur in Fig. 12(d) and (f). These figures correspond to
ets 1 and 3, which are the cases that considered 1.0 �m diameter
SZ particles. This is opposed to Fig. 12(e), which corresponds to Set
and maintains 0.5 �m YSZ particles. The primary source of these
iscrepancies is recognized at smaller to mid-range phase diame-
ers. This may seem surprising because, while these regions have a
maller volume, they are often attributed to regions of constriction
hat result in increased Joule heating. However, Set 2 maintains the
mallest YSZ particles and also has the largest resistive losses. Fur-
her, the broader phase size distributions of Sets 1 and 3 in Fig. 12(d)
nd (f), respectively, suggest that there is less volume in these data
ets attributed to these smaller diameter regions.

Examining Fig. 12(g)–(i), the microstructure-induced resistive
oss distribution is shown for the same respective cases. Again, the
road effects of the microstructure are highlighted in Fig. 12(g) and
i), while the microstructure had a considerable impact on Set 2 in

ig. 12(h), which considered the 0.5 �m YSZ particles. This effect
s approximately 4× that in the other two sets. This is most likely
he result of the increased probability and volume attributed to
egions of constricted cross-section. These regions can result from
he smaller constituent particles and are exemplified by the phase
urces 195 (2010) 7943–7958 7957

size distribution maintaining its primary volumetric peak at this
0.5 �m YSZ particle diameter, which also corresponds to the large
microstructure-induced resistive loss distribution peak.

5. Conclusions

Several qualitative and quantitative measures of a hetero-
geneous structure and its effect on transport-related processes
are introduced in this work. Specifically, the details surrounding
methods developed by the authors’ to examine these proper-
ties are discussed, demonstrated, and verified. Test structures,
sphere-packing generated structures, and several XCT imaged SOFC
electrode samples are considered. All of the methods discussed in
this work are developed for the purpose of examining 3-D non-
destructively imaged segments of an SOFC anode microstructure;
however, they may find application with other characterization
methods or communities. The methods discussed in this work can
assist in understanding the details of a heterogeneous structure and
how it impacts attributed transport processes.

Within this discussion, the phase size distributions of the var-
ious samples and structures are discussed, which are determined
using a ray-shooting method. This approach has been developed
using a lattice Boltzmann based spatial discretization method. The
ray-shooting method is used with an analytic development to pro-
duce a histogram that represents the portion of the volume fraction
of given phase within the structure attributed to a phase diameter,
D, within a differential diameter. This method was then adapted
so that it could concurrently examine a complementary structure
containing scalar resistive loss values, due to Joule heating, within
the structure. The scalar resistive loss distributions required inde-
pendent, but complementary, development. This distribution also
required an independent, detailed transport analysis to identify
the transport-related losses in the system. This analysis has been
shown to be able to describe the combination of the microstructural
(e.g., constrictions) and volumetric contributions to the irreversibil-
ity in SOFC anode transport processes.
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